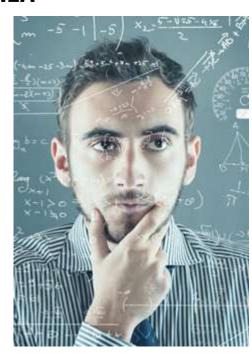

L'uso dell'intelligenza artificiale nella valutazione della compatibilita HLA ai fini della selezione del miglior donatore di cellule staminali: creazione di un modello prototipo e sviluppi futuri

Roberto Crocchiolo

XXX Congresso Nazionale AIBT - 11 ottobre 2024


Stem cell donor selection: factors

HLA

Patient-donor matching
Donor-specific anti-HLA Abs

non-HLA

Donor age
Gender
ABO
CMV
Parity
Registry

Aim of the study

 To develop a calculator of 2-y OS according to the type of stem cell donor, to support the transplant physician during the selection for a pre-determined patient

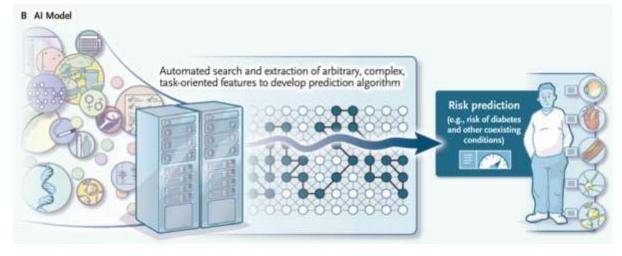
$$2-y \square S = X$$

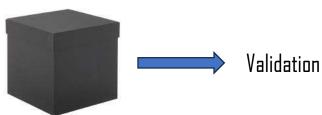
Matched unrelated donor

$$2-y \square S = Y$$

$$2-y \ OS = Z$$

Stefania Cacace, PoliMI


Al models

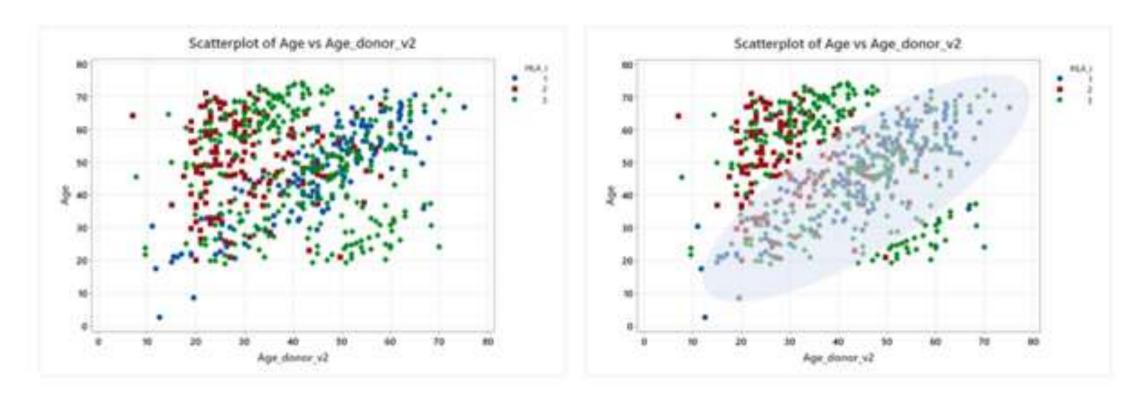


Regression analysis

$$Yp = β_{\Pi} + β_{1}x_{1} + β_{2}x_{2} + ... + β_{k}x_{k} + σΦ^{-1}(p)$$

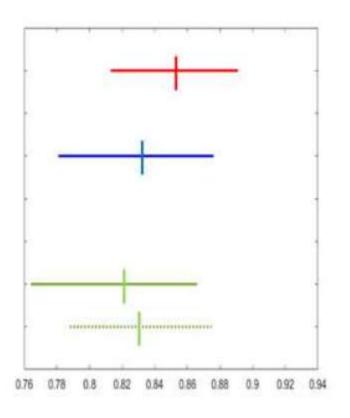
- 1. Yp: Represents either the failure time or the logarithm of the failure time, depending on the distribution of the data.
- 2. $\beta_0, \beta_1, ..., \beta_k$: Regression coefficients.
- 3. $x_1, x_2, ..., x_k$ predictor variables.
- 4. σ : A scale parameter (for most distributions) or shape parameter (for Weibull distribution).
- 5. Φ -I(p): The p-th quantile of the standardized life distribution.

Napoli, 10/12 ottobre 2024


Real-world data obtained from clinical electronic charts of two transplant centers (ICH, AO Vittorio Emanuele), interval Jul 2010 - Jan

Patient characteristics	Number of patients 737		
Number of patients			
Gender			
Male	431		
Female	306		
Median age at transplantation	48		
HLA match			
Identical sibling	218		
Matched unrelated	198		
Haploidentical	321		
Diagnosis*			
Group 1	306		
Group 2	114		
Group 3	317		
Median Karnofsky score	87.7		
Karnofsky score >90% at HSCT	446		
Positive CMV serostatus	684		
Negative CMV serostatu	53		
Total comorbidities			
No comorbidity	423		
1 comorbidity	256		
>2 comorbidities	58		

Donor characteristics	Number of donors			
Median age at donation	40			
Gender				
Male	500			
Female	331			
missing	6			
Positive CMV serostatus	556			
Negative CMV serostatus	181			


Figure 1. Scatterplots of patient and donors ages by HLA match types. The X axis represents the age of the donor, while the Y axis the age of the patient. Each point represents a donor-patient pair and is color-coded: HLA-identical sibling (blue), unrelated donor (red), haploidentical donor (green).

Napoli, 10/12 ottobre 2024

	Age	Diagnosis	HLA	Sorror	Age_donor	2y-OS	CI_I	CI_u
_	45	AL in CR1	HLA-id sibling	0	45	0.856	0.813	0.891
	45	AL in CR1	MUD 10/10	0	30	0.834	0.781	0.876
	45	AL in CR1	haplo	0	20	0.821	0.764	0.866
•••••	45	AL in CR1	haplo	0	45	0.836	0.788	0.875

n = 22,241 HSCTs

Random survival forest

https://mednexus.org/doi/full/10.1097/CM9.0000000000001539

Extreme gradient boosting [XGB]

https://www.nature.com/articles/s41598-021-86327-7

Deep learning

https://ojs.aaai.org/index.php/AAAI/article/view/11842

Bayesian hierarchical Cox Proportional model

https://www.nature.com/articles/s41598-021-03645-6

Bayesian Additive Regression Trees (BART)

https://www.researchgate.net/publication/363058671_Bayesian_Additive_Re gression_Trees_for_Predicting_Colon_Cancer_Methodological_Study_Validity _Study

Conclusions

- Feasibility of developing a tool (calculator) that may help transplant physicians in the decision-making process → prototype
- Al models = regression
- Novelty → all donor types

Al is expected to outperform with large dataset (ongoing)

Acknowledgments

Roberto Crocchiolo ¹, Stefania Cacace ², Giuseppe Milone ³, Barbara Sarina ⁴, Alessandra Cupri ³, Salvatore Leotta ³, Giulia Giuffrida ³, Andrea Spadaro ³, Jacopo Mariotti ⁴, Stefania Bramanti ⁴, Alice Fumagalli ⁴, Maria Pia Azzaro ³, Sebastiana Toscano ³ and Quirico Semeraro ²

- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- ² Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy
- ³ Ematologia, Azienda Ospedaliera Vittorio Emanuele, Catania, Italy
- ⁴ Ematologia, Istituto Clinico Humanitas, Rozzano, Italy

